--- _id: '2025' abstract: - lang: eng text: " As the electron transport layer of dye-sensitized solar cells (DSSCs), the photoanode is an important component that affects photoelectric conversion efficiency (PCE). The commonly used material titanium dioxide (TiO2) is difficult to prepare as nanostructures with large specific surface area, which affects dye loading and electrolyte diffusion. Herein, TiO2 nanofibers and ZnO-TiO2 composite nanofibers with different molar ratios are synthesized by electrospinning technology. The above nanofibers are coated on photoanodes by the doctor blade method to assemble DSSCs. The influence of the composite ratio of ZnO-TiO2 composite nanofibers on the photoelectric performance of the assembled DSSCs is explored. The ZnO-TiO2 composite nanofibers with a molar ratio of 1 : 2 have large specific surface area and porosity and have the smallest charge transfer resistance at the photoanode-electrolyte interface. The PCE of the nanofiber-modified DSSCs reaches a maximum of 3.66%, which is 56% higher than that of the TiO2 nanofiber-modified DSSCs. The photovoltaic parameters such as open circuit voltage (VOC), current density (JSC), and fill factor (FF) are 0.58 V, 10.36 mA/cm2, and 0.61, respectively. Proper compounding of zinc oxide (ZnO) can not only make the nanofibers absorb more dyes and enhance the light-harvesting ability but also improve the diffusion of the electrolyte and enhance the electron transport, thus successfully improving the power conversion efficiency of DSSCs.\r\n " article_number: '7356943' article_type: original author: - first_name: Qiqi full_name: Chang, Qiqi last_name: Chang - first_name: Jun full_name: Xu, Jun last_name: Xu - first_name: Yijun full_name: Han, Yijun last_name: Han - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 - first_name: Tianhong full_name: He, Tianhong last_name: He - first_name: Ruiping full_name: Zheng, Ruiping last_name: Zheng citation: alphadin: 'Chang, Qiqi ; Xu, Jun ; Han, Yijun ; Ehrmann, Andrea ; He, Tianhong ; Zheng, Ruiping: Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers. In: Journal of Nanomaterials Bd. 2022, Hindawi Limited (2022)' ama: Chang Q, Xu J, Han Y, Ehrmann A, He T, Zheng R. Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers. Journal of Nanomaterials. 2022;2022. doi:10.1155/2022/7356943 apa: Chang, Q., Xu, J., Han, Y., Ehrmann, A., He, T., & Zheng, R. (2022). Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/7356943 bibtex: '@article{Chang_Xu_Han_Ehrmann_He_Zheng_2022, title={Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers}, volume={2022}, DOI={10.1155/2022/7356943}, number={7356943}, journal={Journal of Nanomaterials}, publisher={Hindawi Limited}, author={Chang, Qiqi and Xu, Jun and Han, Yijun and Ehrmann, Andrea and He, Tianhong and Zheng, Ruiping}, year={2022} }' chicago: Chang, Qiqi, Jun Xu, Yijun Han, Andrea Ehrmann, Tianhong He, and Ruiping Zheng. “Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers.” Journal of Nanomaterials 2022 (2022). https://doi.org/10.1155/2022/7356943. ieee: Q. Chang, J. Xu, Y. Han, A. Ehrmann, T. He, and R. Zheng, “Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers,” Journal of Nanomaterials, vol. 2022, 2022. mla: Chang, Qiqi, et al. “Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers.” Journal of Nanomaterials, vol. 2022, 7356943, Hindawi Limited, 2022, doi:10.1155/2022/7356943. short: Q. Chang, J. Xu, Y. Han, A. Ehrmann, T. He, R. Zheng, Journal of Nanomaterials 2022 (2022). date_created: 2022-07-14T17:44:39Z date_updated: 2024-03-27T14:01:14Z doi: 10.1155/2022/7356943 file: - access_level: open_access content_type: application/pdf creator: aehrmann date_created: 2022-07-14T17:43:57Z date_updated: 2022-07-14T17:43:57Z file_id: '2026' file_name: _2022_Chang_JoN2022_7356943.pdf file_size: 4097888 relation: main_file success: 1 file_date_updated: 2022-07-14T17:43:57Z has_accepted_license: '1' intvolume: ' 2022' language: - iso: eng oa: '1' publication: Journal of Nanomaterials publication_identifier: eissn: - 1687-4129 issn: - 1687-4110 publication_status: published publisher: Hindawi Limited quality_controlled: '1' status: public title: Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article urn: urn:nbn:de:hbz:bi10-20257 user_id: '245590' volume: 2022 year: '2022' ... --- _id: '1072' abstract: - lang: eng text: " Due to their electrical and mechanical properties, carbon nanofibers are of large interest for diverse applications, from batteries to solar cells to filters. They can be produced by electrospinning polyacrylonitrile (PAN), stabilizing the gained nanofiber mats, and afterwards, carbonizing them in inert gas. The electrospun base material and the stabilization process are crucial for the results of the carbonization process, defining the whole fiber morphology. While blending PAN with gelatin to gain highly porous nanofibers has been reported a few times in the literature, no attempts have been made yet to stabilize and carbonize these fibers. This paper reports on the first tests of stabilizing PAN/gelatin nanofibers, depicting the impact of different stabilization temperatures and heating rates on the chemical properties as well as the morphologies of the resulting nanofiber mats. Similar to stabilization of pure PAN, a stabilization temperature of 280°C seems suitable, while the heating rate does not significantly influence the chemical properties. Compared to stabilization of pure PAN nanofiber mats, approximately doubled heating rates can be used for PAN/gelatin blends without creating undesired conglutinations, making this base material more suitable for industrial processes.\r\n " alternative_id: - '320' author: - first_name: Lilia full_name: Sabantina, Lilia last_name: Sabantina - first_name: Daria full_name: Wehlage, Daria last_name: Wehlage - first_name: Michaela full_name: Klöcker, Michaela last_name: Klöcker - first_name: Al full_name: Mamun, Al last_name: Mamun - first_name: Timo full_name: Grothe, Timo id: '221330' last_name: Grothe orcid: 0000-0002-9099-4277 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0002-9099-4277/work/94758915 - first_name: Francisco José full_name: García-Mateos, Francisco José last_name: García-Mateos - first_name: José full_name: Rodríguez-Mirasol, José last_name: Rodríguez-Mirasol - first_name: Tomás full_name: Cordero, Tomás last_name: Cordero - first_name: Karin full_name: Finsterbusch, Karin last_name: Finsterbusch - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/94758916 citation: alphadin: 'Sabantina, Lilia ; Wehlage, Daria ; Klöcker, Michaela ; Mamun, Al ; Grothe, Timo ; García-Mateos, Francisco José ; Rodríguez-Mirasol, José ; Cordero, Tomás ; u. a.: Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization. In: Journal of Nanomaterials Bd. 2018, Hindawi Limited (2018), S. 1–12' ama: Sabantina L, Wehlage D, Klöcker M, et al. Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization. Journal of Nanomaterials. 2018;2018:1-12. doi:10.1155/2018/6131085 apa: Sabantina, L., Wehlage, D., Klöcker, M., Mamun, A., Grothe, T., García-Mateos, F. J., … Ehrmann, A. (2018). Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization. Journal of Nanomaterials, 2018, 1–12. https://doi.org/10.1155/2018/6131085 bibtex: '@article{Sabantina_Wehlage_Klöcker_Mamun_Grothe_García-Mateos_Rodríguez-Mirasol_Cordero_Finsterbusch_Ehrmann_2018, title={Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization}, volume={2018}, DOI={10.1155/2018/6131085}, journal={Journal of Nanomaterials}, publisher={Hindawi Limited}, author={Sabantina, Lilia and Wehlage, Daria and Klöcker, Michaela and Mamun, Al and Grothe, Timo and García-Mateos, Francisco José and Rodríguez-Mirasol, José and Cordero, Tomás and Finsterbusch, Karin and Ehrmann, Andrea}, year={2018}, pages={1–12} }' chicago: 'Sabantina, Lilia, Daria Wehlage, Michaela Klöcker, Al Mamun, Timo Grothe, Francisco José García-Mateos, José Rodríguez-Mirasol, Tomás Cordero, Karin Finsterbusch, and Andrea Ehrmann. “Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization.” Journal of Nanomaterials 2018 (2018): 1–12. https://doi.org/10.1155/2018/6131085.' ieee: L. Sabantina et al., “Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization,” Journal of Nanomaterials, vol. 2018, pp. 1–12, 2018. mla: Sabantina, Lilia, et al. “Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization.” Journal of Nanomaterials, vol. 2018, Hindawi Limited, 2018, pp. 1–12, doi:10.1155/2018/6131085. short: L. Sabantina, D. Wehlage, M. Klöcker, A. Mamun, T. Grothe, F.J. García-Mateos, J. Rodríguez-Mirasol, T. Cordero, K. Finsterbusch, A. Ehrmann, Journal of Nanomaterials 2018 (2018) 1–12. date_created: 2021-05-31T18:36:33Z date_updated: 2023-10-04T13:06:57Z doi: 10.1155/2018/6131085 intvolume: ' 2018' language: - iso: eng page: 1-12 publication: Journal of Nanomaterials publication_identifier: eissn: - 1687-4129 issn: - 1687-4110 publication_status: published publisher: Hindawi Limited status: public title: Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '245590' volume: 2018 year: '2018' ... --- _id: '1079' abstract: - lang: eng text: " Fourfold magnetic nanoparticles, created from nanowires or in the form of an open square, offer the possibility of creating quaternary memory devices with four unambiguously distinguishable stable states at remanence. This feature, however, has been simulated for single magnetic nanoparticles or clusters with interparticle distances similar to the nanoparticle dimensions. For the possible use in bit-patterned media, it is important to understand the scaling behavior of the stability of the additional intermediate states with the interparticle distance. The paper investigates exemplarily nanoparticles of two shapes which were found to be optimum to gain four states at remanence. For clusters of these particles, the probability of reaching the additional intermediate states in all particles in the same field region is strongly reduced with decreased interparticle distance. The differences between both shapes indicate possible solutions for this problem in the form of new nanoparticle shapes.\r\n " author: - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/94758840 - first_name: Tomasz full_name: Blachowicz, Tomasz last_name: Blachowicz citation: alphadin: 'Ehrmann, Andrea ; Blachowicz, Tomasz: Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process. In: Journal of Nanomaterials Bd. 2017, Hindawi Limited (2017), S. 1–6' ama: Ehrmann A, Blachowicz T. Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process. Journal of Nanomaterials. 2017;2017:1-6. doi:10.1155/2017/5046076 apa: Ehrmann, A., & Blachowicz, T. (2017). Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process. Journal of Nanomaterials, 2017, 1–6. https://doi.org/10.1155/2017/5046076 bibtex: '@article{Ehrmann_Blachowicz_2017, title={Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process}, volume={2017}, DOI={10.1155/2017/5046076}, journal={Journal of Nanomaterials}, publisher={Hindawi Limited}, author={Ehrmann, Andrea and Blachowicz, Tomasz}, year={2017}, pages={1–6} }' chicago: 'Ehrmann, Andrea, and Tomasz Blachowicz. “Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process.” Journal of Nanomaterials 2017 (2017): 1–6. https://doi.org/10.1155/2017/5046076.' ieee: A. Ehrmann and T. Blachowicz, “Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process,” Journal of Nanomaterials, vol. 2017, pp. 1–6, 2017. mla: Ehrmann, Andrea, and Tomasz Blachowicz. “Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process.” Journal of Nanomaterials, vol. 2017, Hindawi Limited, 2017, pp. 1–6, doi:10.1155/2017/5046076. short: A. Ehrmann, T. Blachowicz, Journal of Nanomaterials 2017 (2017) 1–6. date_created: 2021-05-31T18:36:43Z date_updated: 2021-06-01T07:37:38Z doi: 10.1155/2017/5046076 intvolume: ' 2017' language: - iso: eng page: 1-6 publication: Journal of Nanomaterials publication_identifier: eissn: - 1687-4129 issn: - 1687-4110 publication_status: published publisher: Hindawi Limited status: public title: Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '237837' volume: 2017 year: '2017' ...