--- _id: '1601' abstract: - lang: eng text: " Combining soft and hard magnetic materials is not only of technological importance in diverse spintronics elements, but also of high interest in basic research. Here, we report on different arrays combining iron and nickel, e.g., by embedding circular nanodots of one material in a matrix of the other. Micromagnetic simulations were performed using OOMMF. Our results show that magnetization reversal processes are strongly influenced by neighboring nanodots and the magnetic matrix in which the nanodots are embedded, respectively, which becomes macroscopically visible by several steps along the slopes of the hysteresis loops. Such material combinations allow for preparing quaternary memories and are thus highly relevant for applications in data storage and processing.\r\n \ " article_number: '80' article_type: original author: - first_name: Devika full_name: Sudsom, Devika last_name: Sudsom - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105572105 citation: alphadin: 'Sudsom, Devika ; Ehrmann, Andrea: Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices. In: Materials Proceedings Bd. 4, MDPI AG (2021), Nr. 1' ama: Sudsom D, Ehrmann A. Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices. Materials Proceedings. 2021;4(1). doi:10.3390/IOCN2020-07940 apa: Sudsom, D., & Ehrmann, A. (2021). Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices. Materials Proceedings, 4(1). https://doi.org/10.3390/IOCN2020-07940 bibtex: '@article{Sudsom_Ehrmann_2021, title={Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices}, volume={4}, DOI={10.3390/IOCN2020-07940}, number={180}, journal={Materials Proceedings}, publisher={MDPI AG}, author={Sudsom, Devika and Ehrmann, Andrea}, year={2021} }' chicago: Sudsom, Devika, and Andrea Ehrmann. “Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices.” Materials Proceedings 4, no. 1 (2021). https://doi.org/10.3390/IOCN2020-07940. ieee: D. Sudsom and A. Ehrmann, “Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices,” Materials Proceedings, vol. 4, no. 1, 2021. mla: Sudsom, Devika, and Andrea Ehrmann. “Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices.” Materials Proceedings, vol. 4, no. 1, 80, MDPI AG, 2021, doi:10.3390/IOCN2020-07940. short: D. Sudsom, A. Ehrmann, Materials Proceedings 4 (2021). date_created: 2022-01-01T14:11:21Z date_updated: 2022-01-01T15:09:20Z department: - _id: '103' doi: 10.3390/IOCN2020-07940 intvolume: ' 4' issue: '1' keyword: - micromagnetic simulation - OOMMF - nanodots - antidots - array - spintronics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/IOCN2020-07940 oa: '1' publication: Materials Proceedings publication_identifier: eissn: - 2673-4605 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Micromagnetic Simulations of Magnetic Particles Embedded in Magnetic or Non-Magnetic Matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 4 year: '2021' ... --- _id: '1603' abstract: - lang: eng text: " Magnetic nanodots are of high interest for basic research due to their broad spectrum of possible magnetic states and magnetization reversal processes. Besides, they are of technological interest since they can be applied in magnetic data storage, especially if vortex states occur in closed dots or open rings. While producing such nanorings and nanodots from diverse magnetic materials by lithographic techniques is quite common nowadays, these production technologies are naturally prone to small deviations of the borders of these nanoparticles. Here we investigate the influence of well-defined angular-dependent roughness of the edges, created by building the nanoparticles from small cubes, on the resulting hysteresis loops and magnetization reversal processes in five different round nanodots with varying open areas, from a thin ring to a closed nanodot. By varying the orientation of the external magnetic field, the impact of the angle-dependent roughness can be estimated. Especially for the thinnest ring, significant dependence of the transverse magnetization component on the field orientation can be found.\r\n \ " article_number: '19' article_type: original author: - first_name: Pia full_name: Steinmetz, Pia last_name: Steinmetz - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105572063 citation: alphadin: 'Steinmetz, Pia ; Ehrmann, Andrea: Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry. In: Condensed Matter Bd. 6, MDPI AG (2021), Nr. 2' ama: Steinmetz P, Ehrmann A. Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry. Condensed Matter. 2021;6(2). doi:10.3390/condmat6020019 apa: Steinmetz, P., & Ehrmann, A. (2021). Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry. Condensed Matter, 6(2). https://doi.org/10.3390/condmat6020019 bibtex: '@article{Steinmetz_Ehrmann_2021, title={Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry}, volume={6}, DOI={10.3390/condmat6020019}, number={219}, journal={Condensed Matter}, publisher={MDPI AG}, author={Steinmetz, Pia and Ehrmann, Andrea}, year={2021} }' chicago: Steinmetz, Pia, and Andrea Ehrmann. “Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry.” Condensed Matter 6, no. 2 (2021). https://doi.org/10.3390/condmat6020019. ieee: P. Steinmetz and A. Ehrmann, “Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry,” Condensed Matter, vol. 6, no. 2, 2021. mla: Steinmetz, Pia, and Andrea Ehrmann. “Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry.” Condensed Matter, vol. 6, no. 2, 19, MDPI AG, 2021, doi:10.3390/condmat6020019. short: P. Steinmetz, A. Ehrmann, Condensed Matter 6 (2021). date_created: 2022-01-01T14:13:48Z date_updated: 2022-01-01T15:08:21Z department: - _id: '103' doi: 10.3390/condmat6020019 intvolume: ' 6' issue: '2' keyword: - OOMMF (Object Orientated MicroMagnetic Framework) - nanostructure - iron - vortex state - domain wall - rough borders language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/condmat6020019 oa: '1' publication: Condensed Matter publication_identifier: eissn: - 2410-3896 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Micromagnetic Simulation of Round Ferromagnetic Nanodots with Varying Roughness and Symmetry tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 6 year: '2021' ... --- _id: '1606' abstract: - lang: eng text: " Square magnetic nanodots can show intentional or undesired shape modifications, resulting in superellipses with concave or convex edges. Some research groups also concentrated on experimentally investigating or simulating concave nano-superellipses, sometimes called magnetic astroids due to their similarity to the mathematical shape of an astroid. Due to the strong impact of shape anisotropy in nanostructures, the magnetization-reversal process including coercive and reversibility fields can be expected to be different in concave or convex superellipses than that in common squares. Here, we present angle-dependent micromagnetic simulations on magnetic nanodots with the shape of concave superellipses. While magnetization reversal occurs via meander states, horseshoe states or the 180° rotation of magnetization for the perfect square, depending on the angle of the external magnetic field, more complicated states occur for superellipses with strong concaveness. Even apparently asymmetric hysteresis loops can be found along the hard magnetization directions, which can be attributed to measuring minor loops since the reversibility fields become much larger than the coercive fields.\r\n " article_number: '17' article_type: original author: - first_name: Emre full_name: Öncü, Emre last_name: Öncü - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105572027 citation: alphadin: 'Öncü, Emre ; Ehrmann, Andrea: Magnetization Reversal in Concave Iron Nano-Superellipses. In: Condensed Matter Bd. 6, MDPI AG (2021), Nr. 2' ama: Öncü E, Ehrmann A. Magnetization Reversal in Concave Iron Nano-Superellipses. Condensed Matter. 2021;6(2). doi:10.3390/condmat6020017 apa: Öncü, E., & Ehrmann, A. (2021). Magnetization Reversal in Concave Iron Nano-Superellipses. Condensed Matter, 6(2). https://doi.org/10.3390/condmat6020017 bibtex: '@article{Öncü_Ehrmann_2021, title={Magnetization Reversal in Concave Iron Nano-Superellipses}, volume={6}, DOI={10.3390/condmat6020017}, number={217}, journal={Condensed Matter}, publisher={MDPI AG}, author={Öncü, Emre and Ehrmann, Andrea}, year={2021} }' chicago: Öncü, Emre, and Andrea Ehrmann. “Magnetization Reversal in Concave Iron Nano-Superellipses.” Condensed Matter 6, no. 2 (2021). https://doi.org/10.3390/condmat6020017. ieee: E. Öncü and A. Ehrmann, “Magnetization Reversal in Concave Iron Nano-Superellipses,” Condensed Matter, vol. 6, no. 2, 2021. mla: Öncü, Emre, and Andrea Ehrmann. “Magnetization Reversal in Concave Iron Nano-Superellipses.” Condensed Matter, vol. 6, no. 2, 17, MDPI AG, 2021, doi:10.3390/condmat6020017. short: E. Öncü, A. Ehrmann, Condensed Matter 6 (2021). date_created: 2022-01-01T14:17:07Z date_updated: 2022-01-01T15:07:03Z department: - _id: '103' doi: 10.3390/condmat6020017 intvolume: ' 6' issue: '2' keyword: - nanostructure - iron - object-orientated micromagnetic framework (OOMMF) - asymmetry - minor loop - coercive field - reversibility field language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/condmat6020017 oa: '1' publication: Condensed Matter publication_identifier: eissn: - 2410-3896 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Magnetization Reversal in Concave Iron Nano-Superellipses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 6 year: '2021' ... --- _id: '1611' abstract: - lang: eng text: " Horizontally shifted and asymmetric hysteresis loops are often associated with exchange-biased samples, consisting of a ferromagnet exchange-coupled with an antiferromagnet. In purely ferromagnetic samples, such effects can occur due to undetected minor loops or thermal effects. Simulations of ferromagnetic nanostructures at zero temperature with sufficiently large saturation fields should not lead to such asymmetries. Here we report on micromagnetic simulations at zero temperature, performed on sputtered nanoparticles with different shapes. The small deviations of the systems due to random anisotropy orientations in the different grains can not only result in strong deviations of magnetization reversal processes and hysteresis loops, but also to distinctly asymmetric, horizontally shifted hysteresis loops in purely ferromagnetic nanoparticles.\r\n " article_number: '13' article_type: original author: - first_name: Joscha full_name: Detzmeier, Joscha last_name: Detzmeier - first_name: Kevin full_name: Königer, Kevin last_name: Königer - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105571903 citation: alphadin: 'Detzmeier, Joscha ; Königer, Kevin ; Ehrmann, Andrea: Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles. In: Materials Proceedings Bd. 4, MDPI AG (2021), Nr. 1' ama: Detzmeier J, Königer K, Ehrmann A. Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles. Materials Proceedings. 2021;4(1). doi:10.3390/IOCN2020-07836 apa: Detzmeier, J., Königer, K., & Ehrmann, A. (2021). Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles. Materials Proceedings, 4(1). https://doi.org/10.3390/IOCN2020-07836 bibtex: '@article{Detzmeier_Königer_Ehrmann_2021, title={Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles}, volume={4}, DOI={10.3390/IOCN2020-07836}, number={113}, journal={Materials Proceedings}, publisher={MDPI AG}, author={Detzmeier, Joscha and Königer, Kevin and Ehrmann, Andrea}, year={2021} }' chicago: Detzmeier, Joscha, Kevin Königer, and Andrea Ehrmann. “Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles.” Materials Proceedings 4, no. 1 (2021). https://doi.org/10.3390/IOCN2020-07836. ieee: J. Detzmeier, K. Königer, and A. Ehrmann, “Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles,” Materials Proceedings, vol. 4, no. 1, 2021. mla: Detzmeier, Joscha, et al. “Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles.” Materials Proceedings, vol. 4, no. 1, 13, MDPI AG, 2021, doi:10.3390/IOCN2020-07836. short: J. Detzmeier, K. Königer, A. Ehrmann, Materials Proceedings 4 (2021). date_created: 2022-01-01T14:21:55Z date_updated: 2022-01-01T15:03:42Z department: - _id: '103' doi: 10.3390/IOCN2020-07836 intvolume: ' 4' issue: '1' keyword: - pseudo-exchange bias - minor loop - micromagnetic simulation - OOMMF - spintronics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/IOCN2020-07836 oa: '1' publication: Materials Proceedings publication_identifier: eissn: - 2673-4605 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Asymmetric Hysteresis Loops and Horizontal Loop Shifts in Purely Ferromagnetic Nanoparticles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 4 year: '2021' ... --- _id: '1614' abstract: - lang: eng text: " Horizontally shifted and asymmetric hysteresis loops are often associated with exchange-biased samples, consisting of a ferromagnet exchange coupled with an antiferromagnet. In purely ferromagnetic samples, such effects can occur due to undetected minor loops or thermal effects. Simulations of ferromagnetic nanostructures at zero temperature with sufficiently large saturation fields should not lead to such asymmetries. Here we report on micromagnetic simulations at zero temperature, performed on sputtered nanoparticles with different structures. The small deviations of the systems due to random anisotropy orientations in the different grains can not only result in strong deviations of magnetization reversal processes and hysteresis loops, but also lead to distinctly asymmetric, horizontally shifted hysteresis loops in purely ferromagnetic nanoparticles.\r\n " article_number: '800' article_type: original author: - first_name: Joscha full_name: Detzmeier, Joscha last_name: Detzmeier - first_name: Kevin full_name: Königer, Kevin last_name: Königer - first_name: Tomasz full_name: Blachowicz, Tomasz last_name: Blachowicz - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105571822 citation: alphadin: 'Detzmeier, Joscha ; Königer, Kevin ; Blachowicz, Tomasz ; Ehrmann, Andrea: Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas. In: Nanomaterials Bd. 11, MDPI AG (2021), Nr. 3' ama: Detzmeier J, Königer K, Blachowicz T, Ehrmann A. Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas. Nanomaterials. 2021;11(3). doi:10.3390/nano11030800 apa: Detzmeier, J., Königer, K., Blachowicz, T., & Ehrmann, A. (2021). Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas. Nanomaterials, 11(3). https://doi.org/10.3390/nano11030800 bibtex: '@article{Detzmeier_Königer_Blachowicz_Ehrmann_2021, title={Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas}, volume={11}, DOI={10.3390/nano11030800}, number={3800}, journal={Nanomaterials}, publisher={MDPI AG}, author={Detzmeier, Joscha and Königer, Kevin and Blachowicz, Tomasz and Ehrmann, Andrea}, year={2021} }' chicago: Detzmeier, Joscha, Kevin Königer, Tomasz Blachowicz, and Andrea Ehrmann. “Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas.” Nanomaterials 11, no. 3 (2021). https://doi.org/10.3390/nano11030800. ieee: J. Detzmeier, K. Königer, T. Blachowicz, and A. Ehrmann, “Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas,” Nanomaterials, vol. 11, no. 3, 2021. mla: Detzmeier, Joscha, et al. “Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas.” Nanomaterials, vol. 11, no. 3, 800, MDPI AG, 2021, doi:10.3390/nano11030800. short: J. Detzmeier, K. Königer, T. Blachowicz, A. Ehrmann, Nanomaterials 11 (2021). date_created: 2022-01-01T14:26:01Z date_updated: 2022-01-01T15:02:14Z department: - _id: '103' doi: 10.3390/nano11030800 intvolume: ' 11' issue: '3' keyword: - pseudo-exchange bias - minor loop - micromagnetic simulation - OOMMF - spintronics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/nano11030800 oa: '1' publication: Nanomaterials publication_identifier: eissn: - 2079-4991 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 11 year: '2021' ... --- _id: '1624' abstract: - lang: eng text: " Combining clusters of magnetic materials with a matrix of other magnetic materials is very interesting for basic research because new, possibly technologically applicable magnetic properties or magnetization reversal processes may be found. Here we report on different arrays combining iron and nickel, for example, by surrounding circular nanodots of one material with a matrix of the other or by combining iron and nickel nanodots in air. Micromagnetic simulations were performed using the OOMMF (Object Oriented MicroMagnetic Framework). Our results show that magnetization reversal processes are strongly influenced by neighboring nanodots and the magnetic matrix by which the nanodots are surrounded, respectively, which becomes macroscopically visible by several steps along the slopes of the hysteresis loops. Such material combinations allow for preparing quaternary memory systems, and are thus highly relevant for applications in data storage and processing.\r\n " article_number: '349' article_type: original author: - first_name: Devika full_name: Sudsom, Devika last_name: Sudsom - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 orcid_put_code_url: https://api.orcid.org/v2.0/0000-0003-0695-3905/work/105571441 citation: alphadin: 'Sudsom, Devika ; Ehrmann, Andrea: Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices. In: Nanomaterials Bd. 11, MDPI AG (2021), Nr. 2' ama: Sudsom D, Ehrmann A. Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices. Nanomaterials. 2021;11(2). doi:10.3390/nano11020349 apa: Sudsom, D., & Ehrmann, A. (2021). Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices. Nanomaterials, 11(2). https://doi.org/10.3390/nano11020349 bibtex: '@article{Sudsom_Ehrmann_2021, title={Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices}, volume={11}, DOI={10.3390/nano11020349}, number={2349}, journal={Nanomaterials}, publisher={MDPI AG}, author={Sudsom, Devika and Ehrmann, Andrea}, year={2021} }' chicago: Sudsom, Devika, and Andrea Ehrmann. “Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices.” Nanomaterials 11, no. 2 (2021). https://doi.org/10.3390/nano11020349. ieee: D. Sudsom and A. Ehrmann, “Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices,” Nanomaterials, vol. 11, no. 2, 2021. mla: Sudsom, Devika, and Andrea Ehrmann. “Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices.” Nanomaterials, vol. 11, no. 2, 349, MDPI AG, 2021, doi:10.3390/nano11020349. short: D. Sudsom, A. Ehrmann, Nanomaterials 11 (2021). date_created: 2022-01-01T14:37:18Z date_updated: 2022-01-01T14:55:38Z department: - _id: '103' doi: 10.3390/nano11020349 intvolume: ' 11' issue: '2' keyword: - micromagnetic simulation - OOMMF - nanodots - antidots - array - spintronics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3390/nano11020349 oa: '1' publication: Nanomaterials publication_identifier: eissn: - 2079-4991 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: '223776' volume: 11 year: '2021' ... --- _id: '684' abstract: - lang: eng text: Horizontally shifted and asymmetric hysteresis loops are often associated with exchange-biased samples, consisting of a ferromagnet exchange-coupled with an antiferromagnet. In purely ferromagnetic samples, such effects can occur due to undetected minor loops or thermal effects. Simulations of ferromagnetic nanostructures at zero temperature with sufficiently large saturation fields should not lead to such asymmetries. Here we report on micromagnetic simulations at zero temperature, performed on sputtered nanoparticles with different shapes. The small deviations of the systems due to random anisotropy orientations in the different grains can not only result in strong deviations of magnetization reversal processes and hysteresis loops, but also to distinctly asymmetric, horizontally shifted hysteresis loops in purely ferromagnetic nanoparticles. author: - first_name: 'Joscha ' full_name: 'Detzmeier, Joscha ' last_name: Detzmeier - first_name: 'Kevin ' full_name: 'Königer, Kevin ' last_name: Königer - first_name: Andrea full_name: Ehrmann, Andrea id: '223776' last_name: Ehrmann orcid: 0000-0003-0695-3905 conference: end_date: 30 November 2020 location: online name: 2nd International Online-Conference on Nanomaterials start_date: 15 November 2020 date_created: 2021-01-03T17:59:28Z date_updated: 2021-01-18T15:32:28Z ddc: - '620' department: - _id: '103' file: - access_level: open_access content_type: application/pdf creator: aehrmann date_created: 2021-01-03T17:58:31Z date_updated: 2021-01-03T17:58:31Z file_id: '685' file_name: 2020_Detzmeier_Sciforum.pdf file_size: 506951 relation: main_file success: 1 file_date_updated: 2021-01-03T17:58:31Z has_accepted_license: '1' keyword: - pseudo-exchange bias - minor loop - micromagnetic simulation - OOMMF - spintronics language: - iso: eng oa: '1' publication: 2nd International Online-Conference on Nanomaterials publication_status: published publisher: MDPI quality_controlled: '1' status: public title: ' Asymmetric hysteresis loops and horizontal loop shifts in purely ferromagnetic nanoparticles' type: conference user_id: '223776' year: '2020' ...