31 Publikationen

Alle markieren

[31]
2021 | Konferenzbeitrag | FH-PUB-ID: 1373
Voigt T, Migenda N, Schöne M, et al. Advanced Data Analytics Platform for Manufacturing Companies. In: 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.
FH-PUB
 
[30]
2021 | Artikel | FH-PUB-ID: 1201
Shah ZH, Müller M, Wang T-C, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photonics Research. 2021;9(5). doi:10.1364/PRJ.416437
FH-PUB | DOI
 
[29]
2021 | Artikel | FH-PUB-ID: 1202
Tharwat A, Schenck W. A conceptual and practical comparison of PSO-style optimization algorithms. Expert Systems with Applications. 2021;167. doi:10.1016/j.eswa.2020.114430
FH-PUB | DOI
 
[28]
2021 | Artikel | FH-PUB-ID: 1203
Migenda N, Möller R, Schenck W. Adaptive dimensionality reduction for neural network-based online principal component analysis. PLOS ONE. 2021;16(3). doi:10.1371/journal.pone.0248896
FH-PUB | DOI
 
[27]
2020 | Preprint | FH-PUB-ID: 1308
Shah ZH, Müller M, Wang T-C, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. bioRxiv. 2020.
FH-PUB
 
[26]
2020 | Artikel | FH-PUB-ID: 1204
Tharwat A, Schenck W. Balancing Exploration and Exploitation: A novel active learner for imbalanced data. Knowledge-Based Systems. 2020;210. doi:10.1016/j.knosys.2020.106500
FH-PUB | DOI
 
[25]
2020 | Konferenzbeitrag | FH-PUB-ID: 1205
Migenda N, Schenck W. Adaptive Dimensionality Reduction for Local Principal Component Analysis. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE; 2020:1579-1586. doi:10.1109/ETFA46521.2020.9212129
FH-PUB | DOI
 
[24]
2020 | Konferenzbeitrag | FH-PUB-ID: 1206
Pelkmann D, Tharwat A, Schenck W. How to Label? Combining Experts’ Knowledge for German Text Classification. In: 2020 7th Swiss Conference on Data Science (SDS). IEEE; 2020:61-62. doi:10.1109/SDS49233.2020.00023
FH-PUB | DOI
 
[23]
2020 | Buchbeitrag | FH-PUB-ID: 1207
Schwan C, Schenck W. Visual Movement Prediction for Stable Grasp Point Detection. In: Iliadis L, Angelov PP, Jayne C, Pimenidis E, eds. Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020. Proceedings of the International Neural Networks Society. Cham: Springer International Publishing; 2020:70-81. doi:10.1007/978-3-030-48791-1_5
FH-PUB | DOI
 
[22]
2019 | Buchbeitrag | FH-PUB-ID: 1208
Migenda N, Möller R, Schenck W. Adaptive Dimensionality Adjustment for Online “Principal Component Analysis.” In: Yin H, Camacho D, Tino P, Tallón-Ballesteros AJ, Menezes R, Allmendinger R, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2019:76-84. doi:10.1007/978-3-030-33607-3_9
FH-PUB | DOI
 
[21]
2018 | Buchbeitrag | FH-PUB-ID: 1209
Grünberg K, Schenck W. A Case Study on Benchmarking IoT Cloud Services. In: Luo M, Zhang L-J, eds. Cloud Computing – CLOUD 2018. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2018:398-406. doi:10.1007/978-3-319-94295-7_28
FH-PUB | DOI
 
[20]
2017 | Artikel | FH-PUB-ID: 1210
Kunkel S, Schenck W. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code. Frontiers in Neuroinformatics. 2017;11. doi:10.3389/fninf.2017.00040
FH-PUB | DOI
 
[19]
2017 | Artikel | FH-PUB-ID: 1211
Schenck W, El Sayed S, Foszczynski M, Homberg W, Pleiter D. Evaluation and Performance Modeling of a Burst Buffer Solution. ACM SIGOPS Operating Systems Review. 2017;50(2):12-26. doi:10.1145/3041710.3041714
FH-PUB | DOI
 
[18]
2017 | Buch als Herausgeber | FH-PUB-ID: 1212
Butz M, Schenck W, van Ooyen A, eds. Anatomy and Plasticity in Large-Scale Brain Models. Frontiers Media SA; 2017. doi:10.3389/978-2-88945-065-7
FH-PUB | DOI
 
[17]
2017 | Artikel | FH-PUB-ID: 1214
Schenck W, Horst M, Tiedemann T, Gaulik S, Möller R. Comparing parallel hardware architectures for visually guided robot navigation. Concurrency and Computation: Practice and Experience. 2017;29(4). doi:10.1002/cpe.3833
FH-PUB | DOI
 
[16]
2016 | Artikel | FH-PUB-ID: 1213
Butz M, Schenck W, van Ooyen A. Editorial: Anatomy and Plasticity in Large-Scale Brain Models. Frontiers in Neuroanatomy. 2016;10. doi:10.3389/fnana.2016.00108
FH-PUB | DOI
 
[15]
2016 | Buchbeitrag | FH-PUB-ID: 1215
Schenck W, El Sayed S, Foszczynski M, Homberg W, Pleiter D. Early Evaluation of the “Infinite Memory Engine” Burst Buffer Solution. In: Taufer M, Mohr B, Kunkel JM, eds. High Performance Computing. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2016:604-615. doi:10.1007/978-3-319-46079-6_41
FH-PUB | DOI
 
[14]
2015 | Buchbeitrag | FH-PUB-ID: 1216
Adinetz AV, Baumeister PF, Böttiger H, et al. Performance Evaluation of Scientific Applications on POWER8. In: Jarvis SA, Wright SA, Hammond SD, eds. High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2015:24-45. doi:10.1007/978-3-319-17248-4_2
FH-PUB | DOI
 
[13]
2013 | Artikel | FH-PUB-ID: 1217
Schenck W. Robot studies on saccade-triggered visual prediction. New Ideas in Psychology. 2013;31(3):221-238. doi:10.1016/j.newideapsych.2012.12.003
FH-PUB | DOI
 
[12]
2013 | Artikel | FH-PUB-ID: 1218
Kaiser A, Schenck W, Möller R. Solving the correspondence problem in stereo vision by internal simulation. Adaptive Behavior. 2013;21(4):239-250. doi:10.1177/1059712313488425
FH-PUB | DOI
 
[11]
2012 | Artikel | FH-PUB-ID: 1221
KAISER A, Schenck W, MÖLLER R. COUPLED SINGULAR VALUE DECOMPOSITION OF A CROSS-COVARIANCE MATRIX. International Journal of Neural Systems. 2012;20(04):293-318. doi:10.1142/S0129065710002437
FH-PUB | DOI
 
[10]
2011 | Artikel | FH-PUB-ID: 1220
Schenck W. Kinematic motor learning. Connection Science. 2011;23(4):239-283. doi:10.1080/09540091.2011.625077
FH-PUB | DOI
 
[9]
2011 | Artikel | FH-PUB-ID: 1219
Schenck W, Hoffmann H, Möller R. Grasping of extrafoveal targets: A robotic model. New Ideas in Psychology. 2011;29(3):235-259. doi:10.1016/j.newideapsych.2009.07.005
FH-PUB | DOI
 
[8]
2009 | Buchbeitrag | FH-PUB-ID: 1222
Schenck W. Space Perception through Visuokinesthetic Prediction. In: Pezzulo G, Butz MV, Sigaud O, Baldassarre G, eds. Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009:247-266. doi:10.1007/978-3-642-02565-5_14
FH-PUB | DOI
 
[7]
2008 | Artikel | FH-PUB-ID: 1223
Möller R, Schenck W. Bootstrapping Cognition from Behavior-A Computerized Thought Experiment. Cognitive Science. 2008;32(3):504-542. doi:10.1080/03640210802035241
FH-PUB | DOI
 
[6]
2007 | Artikel | FH-PUB-ID: 1224
Kiefer M, Schuch S, Schenck W, Fiedler K. Emotion and memory: Event-related potential indices predictive for subsequent successful memory depend on the emotional mood state. Advances in Cognitive Psychology. 2007;3(3):363-373. doi:10.2478/v10053-008-0001-8
FH-PUB | DOI
 
[5]
2007 | Artikel | FH-PUB-ID: 1225
Kollmeier T, Röben F, Schenck W, Möller R. Spectral contrasts for landmark navigation. Journal of the Optical Society of America A. 2007;24(1). doi:10.1364/JOSAA.24.000001
FH-PUB | DOI
 
[4]
2007 | Artikel | FH-PUB-ID: 1226
Kiefer M, Schuch S, Schenck W, Fiedler K. Mood States Modulate Activity in Semantic Brain Areas during Emotional Word Encoding. Cerebral Cortex. 2007;17(7):1516-1530. doi:10.1093/cercor/bhl062
FH-PUB | DOI
 
[3]
2007 | Buchbeitrag | FH-PUB-ID: 1229
Schenck W, Möller R. Training and Application of a Visual Forward Model for a Robot Camera Head. In: Butz MV, Sigaud O, Pezzulo G, Baldassarre G, eds. Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:153-169. doi:10.1007/978-3-540-74262-3_9
FH-PUB | DOI
 
[2]
2005 | Artikel | FH-PUB-ID: 1227
Hoffmann H, Schenck W, Möller R. Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics. 2005;93(2):119-130. doi:10.1007/s00422-005-0575-x
FH-PUB | DOI
 
[1]
2005 | Artikel | FH-PUB-ID: 1228
Fiedler K, Schenck W, Watling M, Menges JI. Priming Trait Inferences Through Pictures and Moving Pictures: The Impact of Open and Closed Mindsets. Journal of Personality and Social Psychology. 2005;88(2):229-244. doi:10.1037/0022-3514.88.2.229
FH-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: AMA

Export / Einbettung

31 Publikationen

Alle markieren

[31]
2021 | Konferenzbeitrag | FH-PUB-ID: 1373
Voigt T, Migenda N, Schöne M, et al. Advanced Data Analytics Platform for Manufacturing Companies. In: 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.
FH-PUB
 
[30]
2021 | Artikel | FH-PUB-ID: 1201
Shah ZH, Müller M, Wang T-C, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photonics Research. 2021;9(5). doi:10.1364/PRJ.416437
FH-PUB | DOI
 
[29]
2021 | Artikel | FH-PUB-ID: 1202
Tharwat A, Schenck W. A conceptual and practical comparison of PSO-style optimization algorithms. Expert Systems with Applications. 2021;167. doi:10.1016/j.eswa.2020.114430
FH-PUB | DOI
 
[28]
2021 | Artikel | FH-PUB-ID: 1203
Migenda N, Möller R, Schenck W. Adaptive dimensionality reduction for neural network-based online principal component analysis. PLOS ONE. 2021;16(3). doi:10.1371/journal.pone.0248896
FH-PUB | DOI
 
[27]
2020 | Preprint | FH-PUB-ID: 1308
Shah ZH, Müller M, Wang T-C, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. bioRxiv. 2020.
FH-PUB
 
[26]
2020 | Artikel | FH-PUB-ID: 1204
Tharwat A, Schenck W. Balancing Exploration and Exploitation: A novel active learner for imbalanced data. Knowledge-Based Systems. 2020;210. doi:10.1016/j.knosys.2020.106500
FH-PUB | DOI
 
[25]
2020 | Konferenzbeitrag | FH-PUB-ID: 1205
Migenda N, Schenck W. Adaptive Dimensionality Reduction for Local Principal Component Analysis. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE; 2020:1579-1586. doi:10.1109/ETFA46521.2020.9212129
FH-PUB | DOI
 
[24]
2020 | Konferenzbeitrag | FH-PUB-ID: 1206
Pelkmann D, Tharwat A, Schenck W. How to Label? Combining Experts’ Knowledge for German Text Classification. In: 2020 7th Swiss Conference on Data Science (SDS). IEEE; 2020:61-62. doi:10.1109/SDS49233.2020.00023
FH-PUB | DOI
 
[23]
2020 | Buchbeitrag | FH-PUB-ID: 1207
Schwan C, Schenck W. Visual Movement Prediction for Stable Grasp Point Detection. In: Iliadis L, Angelov PP, Jayne C, Pimenidis E, eds. Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020. Proceedings of the International Neural Networks Society. Cham: Springer International Publishing; 2020:70-81. doi:10.1007/978-3-030-48791-1_5
FH-PUB | DOI
 
[22]
2019 | Buchbeitrag | FH-PUB-ID: 1208
Migenda N, Möller R, Schenck W. Adaptive Dimensionality Adjustment for Online “Principal Component Analysis.” In: Yin H, Camacho D, Tino P, Tallón-Ballesteros AJ, Menezes R, Allmendinger R, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2019:76-84. doi:10.1007/978-3-030-33607-3_9
FH-PUB | DOI
 
[21]
2018 | Buchbeitrag | FH-PUB-ID: 1209
Grünberg K, Schenck W. A Case Study on Benchmarking IoT Cloud Services. In: Luo M, Zhang L-J, eds. Cloud Computing – CLOUD 2018. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2018:398-406. doi:10.1007/978-3-319-94295-7_28
FH-PUB | DOI
 
[20]
2017 | Artikel | FH-PUB-ID: 1210
Kunkel S, Schenck W. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code. Frontiers in Neuroinformatics. 2017;11. doi:10.3389/fninf.2017.00040
FH-PUB | DOI
 
[19]
2017 | Artikel | FH-PUB-ID: 1211
Schenck W, El Sayed S, Foszczynski M, Homberg W, Pleiter D. Evaluation and Performance Modeling of a Burst Buffer Solution. ACM SIGOPS Operating Systems Review. 2017;50(2):12-26. doi:10.1145/3041710.3041714
FH-PUB | DOI
 
[18]
2017 | Buch als Herausgeber | FH-PUB-ID: 1212
Butz M, Schenck W, van Ooyen A, eds. Anatomy and Plasticity in Large-Scale Brain Models. Frontiers Media SA; 2017. doi:10.3389/978-2-88945-065-7
FH-PUB | DOI
 
[17]
2017 | Artikel | FH-PUB-ID: 1214
Schenck W, Horst M, Tiedemann T, Gaulik S, Möller R. Comparing parallel hardware architectures for visually guided robot navigation. Concurrency and Computation: Practice and Experience. 2017;29(4). doi:10.1002/cpe.3833
FH-PUB | DOI
 
[16]
2016 | Artikel | FH-PUB-ID: 1213
Butz M, Schenck W, van Ooyen A. Editorial: Anatomy and Plasticity in Large-Scale Brain Models. Frontiers in Neuroanatomy. 2016;10. doi:10.3389/fnana.2016.00108
FH-PUB | DOI
 
[15]
2016 | Buchbeitrag | FH-PUB-ID: 1215
Schenck W, El Sayed S, Foszczynski M, Homberg W, Pleiter D. Early Evaluation of the “Infinite Memory Engine” Burst Buffer Solution. In: Taufer M, Mohr B, Kunkel JM, eds. High Performance Computing. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2016:604-615. doi:10.1007/978-3-319-46079-6_41
FH-PUB | DOI
 
[14]
2015 | Buchbeitrag | FH-PUB-ID: 1216
Adinetz AV, Baumeister PF, Böttiger H, et al. Performance Evaluation of Scientific Applications on POWER8. In: Jarvis SA, Wright SA, Hammond SD, eds. High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2015:24-45. doi:10.1007/978-3-319-17248-4_2
FH-PUB | DOI
 
[13]
2013 | Artikel | FH-PUB-ID: 1217
Schenck W. Robot studies on saccade-triggered visual prediction. New Ideas in Psychology. 2013;31(3):221-238. doi:10.1016/j.newideapsych.2012.12.003
FH-PUB | DOI
 
[12]
2013 | Artikel | FH-PUB-ID: 1218
Kaiser A, Schenck W, Möller R. Solving the correspondence problem in stereo vision by internal simulation. Adaptive Behavior. 2013;21(4):239-250. doi:10.1177/1059712313488425
FH-PUB | DOI
 
[11]
2012 | Artikel | FH-PUB-ID: 1221
KAISER A, Schenck W, MÖLLER R. COUPLED SINGULAR VALUE DECOMPOSITION OF A CROSS-COVARIANCE MATRIX. International Journal of Neural Systems. 2012;20(04):293-318. doi:10.1142/S0129065710002437
FH-PUB | DOI
 
[10]
2011 | Artikel | FH-PUB-ID: 1220
Schenck W. Kinematic motor learning. Connection Science. 2011;23(4):239-283. doi:10.1080/09540091.2011.625077
FH-PUB | DOI
 
[9]
2011 | Artikel | FH-PUB-ID: 1219
Schenck W, Hoffmann H, Möller R. Grasping of extrafoveal targets: A robotic model. New Ideas in Psychology. 2011;29(3):235-259. doi:10.1016/j.newideapsych.2009.07.005
FH-PUB | DOI
 
[8]
2009 | Buchbeitrag | FH-PUB-ID: 1222
Schenck W. Space Perception through Visuokinesthetic Prediction. In: Pezzulo G, Butz MV, Sigaud O, Baldassarre G, eds. Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009:247-266. doi:10.1007/978-3-642-02565-5_14
FH-PUB | DOI
 
[7]
2008 | Artikel | FH-PUB-ID: 1223
Möller R, Schenck W. Bootstrapping Cognition from Behavior-A Computerized Thought Experiment. Cognitive Science. 2008;32(3):504-542. doi:10.1080/03640210802035241
FH-PUB | DOI
 
[6]
2007 | Artikel | FH-PUB-ID: 1224
Kiefer M, Schuch S, Schenck W, Fiedler K. Emotion and memory: Event-related potential indices predictive for subsequent successful memory depend on the emotional mood state. Advances in Cognitive Psychology. 2007;3(3):363-373. doi:10.2478/v10053-008-0001-8
FH-PUB | DOI
 
[5]
2007 | Artikel | FH-PUB-ID: 1225
Kollmeier T, Röben F, Schenck W, Möller R. Spectral contrasts for landmark navigation. Journal of the Optical Society of America A. 2007;24(1). doi:10.1364/JOSAA.24.000001
FH-PUB | DOI
 
[4]
2007 | Artikel | FH-PUB-ID: 1226
Kiefer M, Schuch S, Schenck W, Fiedler K. Mood States Modulate Activity in Semantic Brain Areas during Emotional Word Encoding. Cerebral Cortex. 2007;17(7):1516-1530. doi:10.1093/cercor/bhl062
FH-PUB | DOI
 
[3]
2007 | Buchbeitrag | FH-PUB-ID: 1229
Schenck W, Möller R. Training and Application of a Visual Forward Model for a Robot Camera Head. In: Butz MV, Sigaud O, Pezzulo G, Baldassarre G, eds. Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:153-169. doi:10.1007/978-3-540-74262-3_9
FH-PUB | DOI
 
[2]
2005 | Artikel | FH-PUB-ID: 1227
Hoffmann H, Schenck W, Möller R. Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics. 2005;93(2):119-130. doi:10.1007/s00422-005-0575-x
FH-PUB | DOI
 
[1]
2005 | Artikel | FH-PUB-ID: 1228
Fiedler K, Schenck W, Watling M, Menges JI. Priming Trait Inferences Through Pictures and Moving Pictures: The Impact of Open and Closed Mindsets. Journal of Personality and Social Psychology. 2005;88(2):229-244. doi:10.1037/0022-3514.88.2.229
FH-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: AMA

Export / Einbettung