Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features

A. Kirsch, A. Günter, M. König, in: 12th International Conference on Pattern Recognition Systems, IEEE, 2022.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Abstract
Point cloud registration is often used in fields like SLAM where the overlap of two consecutive point clouds is large. But in fields like multi-sensor fusion of point clouds and LiDAR-based localization, there is a high chance of registering non-overlapping point cloud pairs. Since in such cases, the result will always be a wrong transformation, it is useful to evaluate the alignability of the point cloud pairs prior to the registration. In this paper, an algorithm is presented that predicts the alignability of two point clouds based on the minimum distances of descriptors. It calculates statistical measures describing the minimum distances and classifies the point cloud pairs. The paper shows that it is possible to predict the alignability and evaluates the runtime compared to registration algorithms, as well as the ignoring of the largest minimum distances.
Erscheinungsjahr
Titel des Konferenzbandes
12th International Conference on Pattern Recognition Systems
Konferenz
12th International Conference on Pattern Recognition Systems
Konferenzort
Saint-Étienne
Konferenzdatum
2022-06-07 – 2022-06-10
FH-PUB-ID

Zitieren

Kirsch, André ; Günter, Andrei ; König, Matthias: Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features. In: 12th International Conference on Pattern Recognition Systems : IEEE, 2022
Kirsch A, Günter A, König M. Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features. In: 12th International Conference on Pattern Recognition Systems. IEEE; 2022. doi:10.1109/ICPRS54038.2022.9854071
Kirsch, A., Günter, A., & König, M. (2022). Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features. In 12th International Conference on Pattern Recognition Systems. Saint-Étienne: IEEE. https://doi.org/10.1109/ICPRS54038.2022.9854071
@inproceedings{Kirsch_Günter_König_2022, title={Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features}, DOI={10.1109/ICPRS54038.2022.9854071}, booktitle={12th International Conference on Pattern Recognition Systems}, publisher={IEEE}, author={Kirsch, André and Günter, Andrei and König, Matthias}, year={2022} }
Kirsch, André, Andrei Günter, and Matthias König. “Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features.” In 12th International Conference on Pattern Recognition Systems. IEEE, 2022. https://doi.org/10.1109/ICPRS54038.2022.9854071.
A. Kirsch, A. Günter, and M. König, “Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features,” in 12th International Conference on Pattern Recognition Systems, Saint-Étienne, 2022.
Kirsch, André, et al. “Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features.” 12th International Conference on Pattern Recognition Systems, IEEE, 2022, doi:10.1109/ICPRS54038.2022.9854071.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar